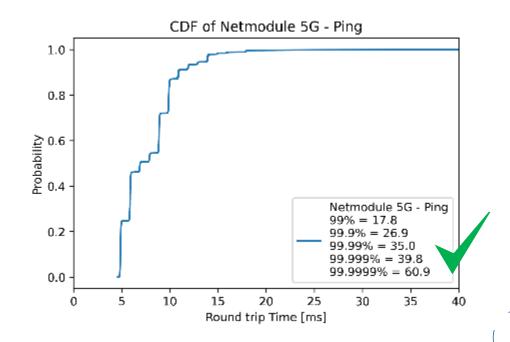
Time sensitive networks over private 5G


Artur.Wachtel@belden.com Principal Architect Technology Value @ Belden CTO office Date: 09/06/202

NB1800: NetModule Industrial Router

- ✓ 2x Gigabit Ethernet, 1x SFP
- ✓ 2xLTE, 2x micro-SIM
 - \checkmark AP or client mode
 - ✓ IEEE1588v2
 - ✓ IEEE802.1AS (TSN)
 - ✓ IEEE 802.11 a/b/g/n/ac
 - ✓ VXLAN Layer-2 Tunnel
- Telit 5G Modem: FN980 (RED certified)
 - 3GPP Release 15, Qualcomm chipset
 - Stand alone, non-standalone
- Telit 5G Modem: FN990
 - 3GPP Release 16, Qualcomm chipset SDX62
 - Stand alone (SA), non-standalone (NSA)

2

Why TSN over 5G?

TSN makes uRLLC usable for operation technologies

Sensor Data: FFT of ultra sound

Position of the 5 axis milling

5G Use Cases versus Business Case or Value Proposition

Use case : preventive maintenance

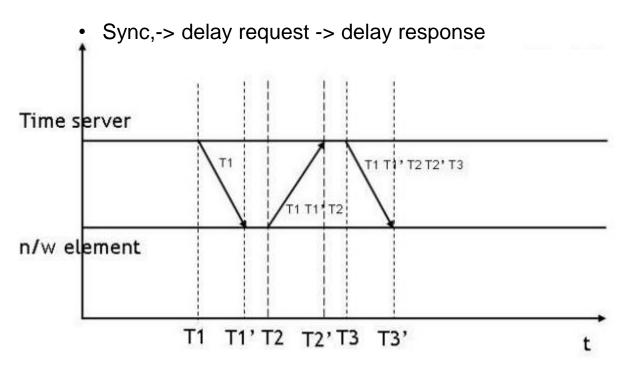
- Use Case
 - Manufacturing: high precision alignment of sensor data in time and space
 - o Next generation of sensors: 4k, ultrasound, lidar
- Time to market:
 - we are still in the early adopter phase 5G needs to solve a problem
 - \circ $\;$ Full feature set and business volume is for later
- Economic viability
 - High material cost titanium blisk ~ 100k€
 - High tool cost, 10 20k€

Motivation for Time Sensitive Networks

Brown Field

- Ethernet functions like place Etoile in Paris
- Industrial Ethernet requires determinism which led to proprietary solutions
 - Profinet
 - Ethercat
 - $\circ \text{ CC-link}$
 - Based on non standard Ethernet hardware

TSN


- Time Sensitive Networks is a set of standards
- IEEE802.1AS provides time synchronization
- TSN Layer 2 has been incorporated in Profinet, EtherCat, CC-link, etc.
- TSN leads to more economic (standard) hardware

Typical timing generation, delivery and synchronization mechanisms

Source	Typical Precision	Description	
Atomic Clock	1 part per10 ¹⁵	An extremely expensive method of generating very high precision time. The root time reference for all other systems is typically an atomic clock	
NTP	<20ms	Network Time Protocol: Dominant protocol for distributing time over Internet. Not suitable for precision time delivery.	
PTP (IEEE1588)	<1us	Precision Time Protocol: Requires end-to-end support at all switches. Used in controlled deployments (e.g., factory, radio access network)	
GPS / GLONASS	<50 ns	Global Positioning System: Over the air, free and very accurate. Requires outdoor unobstructed antenna.	
5G NR+CN TSN-Bridge	±1.5 ns	5G system may provide timing based on several references; Universal Time Coordinated (UTC), GNSS or Local Time. TSN over 5G specified in TS23.501, starting Release 16	

Principle of Precission Time Protocol

- Offset = $\frac{1}{2}[(T1'-T1) (T2' T2)]$
- Latenz = $\frac{1}{2}$ [(T1'-T1) + (T2' T2)] ٠
- Condition : symmetrie ? ٠

BELDEN © Belden | belden.com

Clock hierarchies 1588

- Grand Master Clock • transmits synchronization information to the clocks residing on its network segment.
- Transparent Clock • multiport devices such as bridges
- **Boundary Clock** ٠ has multiple network connections and can accurately synchronize one network segment to another
- Ordinary Clock: ٠ is a device with a single network connection

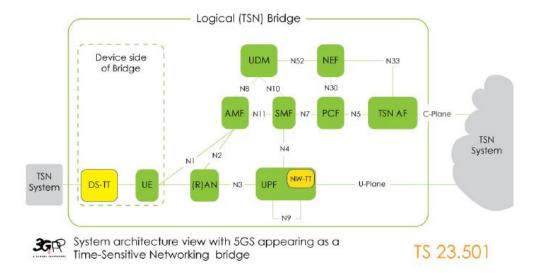
Clock hierarchies TSN

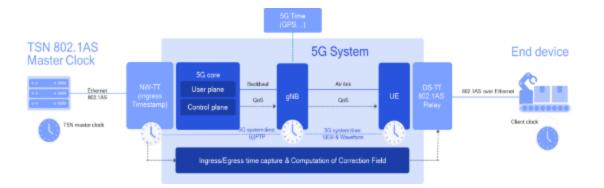
- Relay Instance ~ Boundary Clock ٠
- End Instance

Profiles: 1AS is a profile of PTP

- Faster clock locking •
- Allows for easier / lower cost implementation, L2 ٠ Ethernet
- Every device in the path (endpoints and relays) must support 802.1AS Artur Wachtel, 08.06.2023

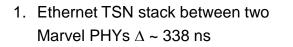
Evolution from IEEE 1588 towards IEEE 802.1AS-20

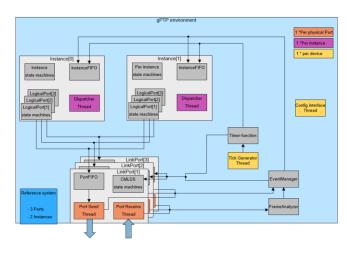

IEEE	1588-2002	1588-2008 (V2)	802.1AS-2011	802.1AS-2020
Residence time correction	No transparentTransparent clocksclocksA switch adjusts pad		cket time stamps with residence time	
Bridge	Time or non time av	vare	Time aware	
Delay calculation	Path delay Peer delay or path P		Peer delay	
Protocols	Layer 2-4, IPv4 multicast	Layer 2-4, IPv4, v6 multicast, unicast	Layer 2 only : Ethernet	
Grandmaster	Multiple domains supported simult.		Single domain	Redundant GM
Asymmetry	none		Correction optional	


IEEE 802.1AS Pdelay is not compatible with IEEE 1588 Pdelay

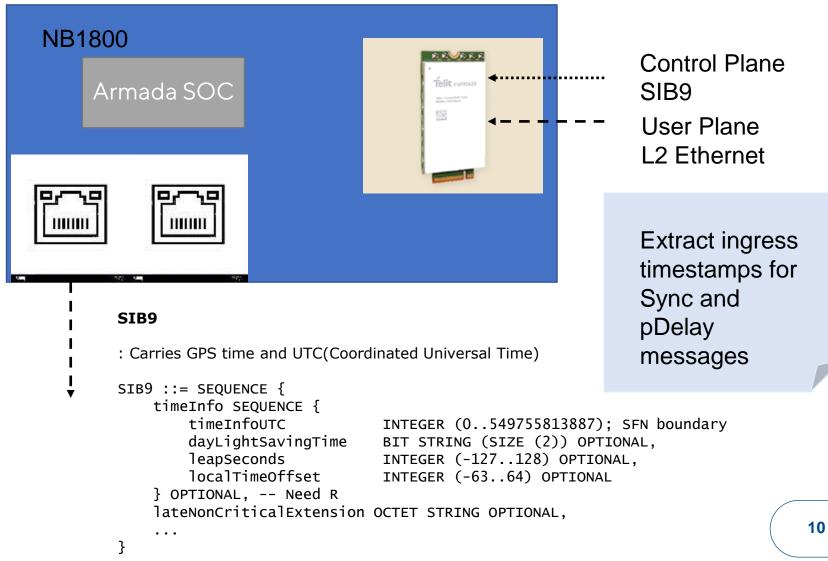
Į,

Release 16 – support for TSN

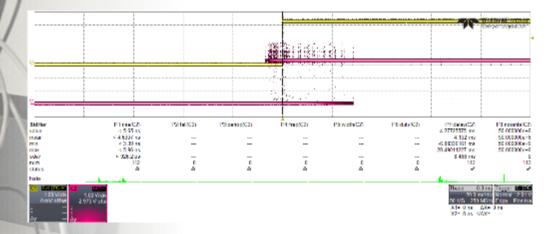

- IEEE 802.1AS-based time synchronization. Rel-16 supports only "downlink synchronization" i.e. scenarios with TSN GM clock residing on the network side.
- Support of the fully centralized IEEE TSN configuration model (IEEE 802.1Qcc). The 5GS architecture for TSN support is largely over-the-top because the TSN-related functionality is primarily confined to TSN Translator (TT) functions at the 5GS ingress points (AF, UPF, UE).
- QoS support for TSN traffic. 5GS supports Time-aware scheduling (IEEE802.1Qbv) and PFSP (Per Stream Filtering and Policing) capabilities (IEEE 802.1Qci).
- **IEC/IEEE60802**: Industrial automation profile, enables concurrent support of Profinet, EtherCat, OPC UA



Overview 802.1AS in NB1800



- 2. TSN stack between Marvel PHY and virtual Ethernet Port
- 3. TSN Stack between Marvel PHY and ETH PDU on FN990



© Belden | belden.com


BELDEN

802.1AS over public 5G

Without SIB9: mean 5,19 ms, min -6.4 ms, max 30 ms

With SIB9: mean -15.51 ns, min -84.89 ns, max 58,18

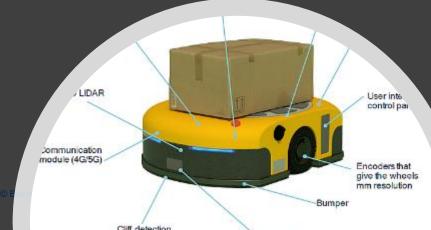
SIB9 – UTC time information broadcasted over 5G

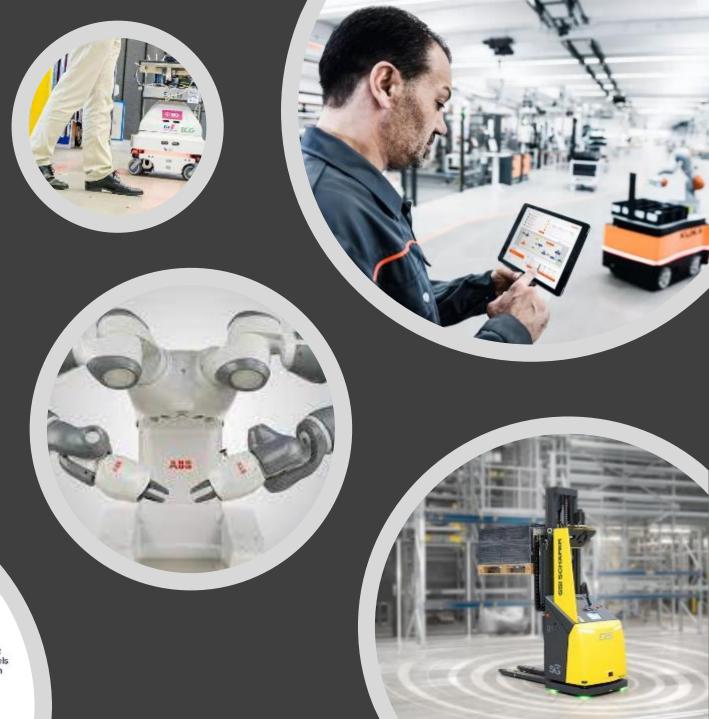
Standalone no SIB9

SIB9 activated

-> Average 1 milli sec, max 5,7 ms min -5,8 ms -> significantly better than public 5G networks

ATT H 100ns 500MSale RIGOL D -2.00000000ns T 🛃 🚺 1.40 V orizonta Coupling ſŀſ DC BWLimit ,]] OFF Freq Probe £., seitin Invert 7 OFF all Time Volts/Div Л Coarse Unit [V] Magnesee \$\$


-> Average 12 nanosec, max 210 ns min -205 ns


5G use cases

• Collaborative robots.

13

- Automatic guided vehicles
- Convergence wireline wireless

Thank You

belden.com